Clustering network data through effective use of eigensolvers and hypergraph models

Alicia Klinvex, Michael Wolf, and Daniel Dunlavy

Exceptional service

in the

national

interest

Motivating problem: Community detection

- Determine groupings of data objects given sets of relationships amongst those objects
- Relationships may be represented in a graph or hypergraph
 - Graphs represent pairwise relationships
 - Hypergraphs represent relationships among groups of things
- Applications
 - Finding emerging research trends from documents (Jung et al., 2014)
 - Clustering categorical data (Gibson et al., 2000)
 - Image segmentation (Agarwal et al., 2005)
 - Metabolic networks (Guimera et al., 2004)

Outline

- Introduction to hypergraphs
- Description of spectral clustering algorithm
- Exploration of eigenvalue problems occurring in spectral clustering
- Spectral clustering results

- Explore the usage of hypergraphs to model relational data
- Understand how to effectively use eigensolvers in spectral analysis of this data

What is a hypergraph?

- Generalization of graph
 - Hyperedges represent multiway relationships between vertices
 - A hyperedge is a set of vertices of arbitrary size
 - Hyperedges can connect more than 2 vertices

What is a hypergraph?

- Multiway relationships can be represented nonambiguously
 - Did A, B, and C write a paper together?

matrix

- Relational data is hypergraph incidence matrix
 - One way to represent a hypergraph as a graph: clique expansion

Hypergraph clique expansion

Hyperedges

	1	2	3
A	1		1
В	1		
C		1	1
D		1	1
E		1	1

Vertices

Graph Edges

	1	2	3	4	5	6	7	8	9	10
Α	X				X	X	X			
В	X									
С		X	X		X			X	X	
D		X		X		X		X		X
Е			X	X			X		X	X

$$|E_g| = \sum_{e_h \in E_h} \binom{d(e_h)}{2}$$

 $d(e_h)$:

hyperedge cardinality

Weighted hypergraph clique expansion

Hyperedges

	1	2	3
Α	1		1
В	1		
С		1	1
D		1	1
Е		1	1

Vertices

Graph Edges

	1	2	3	4	5	6	7	8	9	10
Α	1				1/3	1/3	1/3			
В	1									
С		1/2	1/2		1/3			1/3	1/3	
D		1/2		1/2		1/3		1/3		1/3
Е			1/2	1/2			1/3		1/3	1/3

$$w(e_g) = \frac{1}{d(e_h) - 1}$$

 $d(e_h)$:

hyperedge cardinality

Computational advantages of hypergraphs

1		1
1		
	1	1
	1	1
	1	1

1				1/3	1/3	1/3			
1									
	1/2	1/2		1/3			1/3	1/3	
	1/2		1/2		1/3		1/3		1/3
		1/2	1/2			1/3		1/3	1/3

Hypergraph incidence matrix

Graph Incidence matrix

 Hypergraphs require significantly less storage space than graphs generated using clique expansion

$$|E_g| = \sum_{e_h \in E_h} \binom{d(e_h)}{2}$$

 Hypergraphs require fewer operations for a matrix-vector multiplication

How do we detect communities in graphs and hypergraphs?

- One way: spectral clustering (Ng, et al., 2002)
 - Compute the smallest eigenpairs of the normalized graph or hypergraph Laplacian*

$$L_H = I - D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2} \in \mathbb{R}^{n \times n}$$

$$L_G = I - D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2} \in \mathbb{R}^{n \times n}$$

Laplacian is never explicitly formed

How do we detect communities in graphs and hypergraphs?

- Spectral clustering (Ng, et al., 2002)
 - Compute the smallest eigenpairs of the normalized graph or hypergraph Laplacian (Zhou, et al., 2006)

$$L_G = I - D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2}$$

$$L_H = I - D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2}$$

- Perform k-means clustering on those eigenvectors
 - Partition a set of observations into clusters in which each observation belongs to the cluster with the nearest mean
- Quality of our results is measured using the Jaccard index
 - T = true cluster assignments
 - P = predicted cluster assignments

$$J(T,P) = \frac{|T \cap P|}{|T \cup P|}$$

Randomly Generated Hypergraphs

- Parameters
 - Clusters
 - Nodes per cluster
 - Intra-cluster hyperedges
 - Inter-cluster hyperedges
 - Hyperedge cardinalities
 - Intra-cluster
 - Inter-cluster
- We also generate a ground truth clustering vector
- We may generate multiple instances with the same set of parameters

Incidence Matrix: H_h

EFFECTIVE USE OF EIGENSOLVERS

Experimental results

- Experiments were conducted on a 24 core machine with 128
 GB of memory using 16 MPI processes
- Runtime parameters
 - 10 randomly generated hypergraphs of each type

	G1	G2	G3
Number of clusters	10	5	10
Nodes per cluster	10,000	10,000	10,000
Intra/Inter-cluster hyperedges	40,000 / 50,000	20,000 / 200,000	20,000 / 200,000
Intra/Inter-cluster h-edge cardinality	5/5	10/3	5/5

- 5 k-means trials per matrix
- Eigensolver: LOBPCG (available in Trilinos)
- Number of computed eigenpairs: same as number of clusters*
- Tolerance: 1e-3*

How do graph and hypergraph results compare?

	Graph	Hypergraph
k-means iterations	79.4	28.1
LOBPCG iterations	15.6	8.9

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	5 5

How do graph and hypergraph results compare?

	Graph	Hypergraph
k-means iterations	56.8	5.4
LOBPCG iterations	31.1	6.5

Number of clusters	5
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	10 3

How do graph and hypergraph runtimes compare?

- Runtime ratio:
 - graph runtime
 hypergraph runtime
- Large numbers: bad

Number of clusters	5
nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000 50,000

How many eigenvectors should we

calculate?

Less noisy data: G1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000 50,000
Intra/Inter-cluster h-edge cardinality	5 5
	4-

How many eigenvectors should we calculate?

Less noisy data: G1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000 50,000
Intra/Inter-cluster h-edge cardinality	5 5

How many eigenvectors should we

calculate?

Noisier data: G3

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	5 5

What tolerance should we use?

4		
(5	J

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	5 5
	20

20

Conclusions

- Graph vs hypergraph
 - Preliminary results suggest a dramatic runtime difference between eigensolver computation for graph and hypergraph case
 - Larger Jaccard indices for hypergraph over graph for several problem classes
- Eigensolver
 - Low tolerances are acceptable
 - Choice of number of eigenvectors is very important
 - LOBPCG is effective for problems we studied
- Currently exploring real world problems where hypergraphs may be a better choice